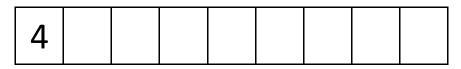


Mathematics Extension 1 2024 Assessment Task 3

General Instructions:


- Reading time 10 minutes
- Working time 2 hours
- Write using black pen
- Calculators approved by NESA may be used
- For questions in Section B, show all relevant mathematical reasoning and/or calculations
- Use a new booklet for each question
- Write your student number and tick teacher name on **everything**

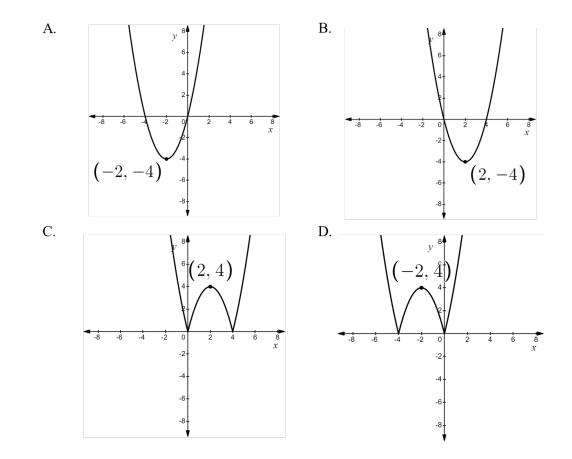
Teacher

(Please tick)

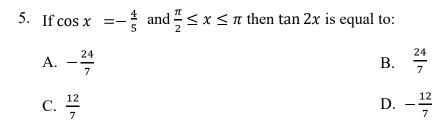
- O Mr Berry
- o Ms Cai
- 0 Mr Ireland
- O Ms Lee
- O Ms Moss
- 0 Mr Umakanthan
- O Dr Vranešević

Student Number:

Marker Use Only:


Question	MC	11	12	13	14	Total	%
Mark	$\overline{10}$	15	15	15	15	70	

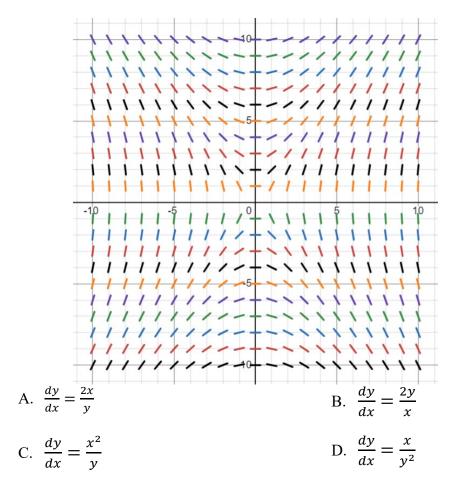
Section A – Multiple Choice (10 marks)


- 1. Given $\underset{\sim}{u} = 2\underset{\sim}{i} 6\underset{\sim}{j}$ and $\underset{\sim}{v} = -\underset{\sim}{i} + 5\underset{\sim}{j}$, $\underset{\sim}{u} \underset{\sim}{v}$ is equivalent to:
 - A. i j \sim B. 3i - j \sim \sim

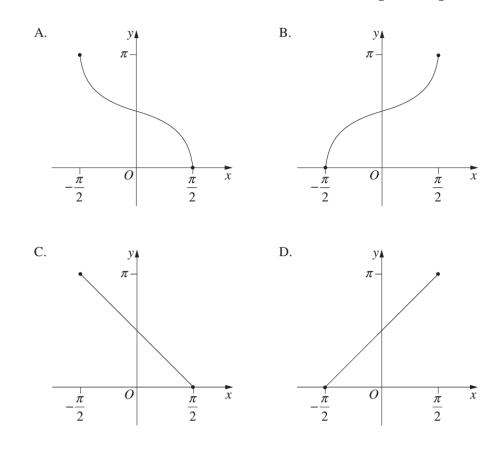
C.
$$i - 11j$$

 \tilde{c} D. $3i - 11j$

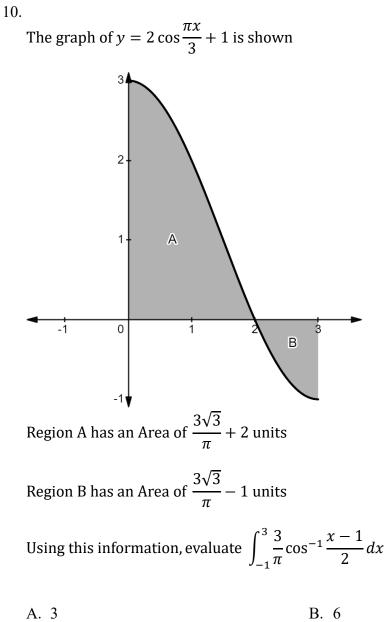
- 2. Let α , β and γ be the roots of $x^3 + px^2 + q = 0$. Express $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\alpha\gamma}$ in terms of p and q
 - A. pqB. -pqC. $-\frac{p}{q}$ D. $\frac{p}{q}$
- 3. Harry projects an arrow at an angle of 60° to the horizontal with an initial velocity of 30 ms⁻¹. What is the horizontal speed of the arrow?
 - A. 60 ms^{-1} C. $30\sqrt{3} \text{ ms}^{-1}$ D. 15 ms^{-1}


4. Given $f(x) = x^2 - 4$ and g(x) = |-x - 2|, which graph represents f(g(x))?

6. Given
$$\underbrace{u}_{\sim} = 2\underbrace{i}_{\sim} + 3\underbrace{j}_{\sim}$$
 and $\underbrace{v}_{\sim} = -2\underbrace{i}_{\sim} + 4\underbrace{j}_{\sim}$, $proj_{u}\underbrace{v}_{\sim}$ is:


A.
$$-\frac{16}{13} \frac{i}{2} + \frac{32}{13} \frac{j}{2}$$

B. 8
C. $\frac{8}{13}$
D. $\frac{16}{13} \frac{i}{2} + \frac{24}{13} \frac{j}{2}$


7. Which of the following differential equations could be represented by the slope field drawn below?

- 8. A curve *C* has parametric equations $x = \cos^2 t$ and $y = 4 \sin^2 t$ for $t \in R$. What is the Cartesian equation of *C*?
 - A. y = 1 x for $0 \le x \le 1$ B. y = 4 4x for $x \in R$ C. y = 1 x for $x \in R$ D. y = 4 4x for $0 \le x \le 1$

9. Which graph best represents $y = \cos^{-1}(-\sin x)$, for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$

C.
$$\frac{6\sqrt{3}}{\pi} + 1$$
 D. $11 - \frac{6\sqrt{3}}{\pi}$

Question 11 (15 marks)

(START A NEW BOOKLET)

a) Solve for *x*:

$$\frac{6}{x-2} \ge 3$$

b) Find the exact value of:

$$\sin\left(2\cos^{-1}\left(\frac{2}{3}\right)\right)$$

c) Find, in simplest terms, the coefficient of the x^6 term in the expansion of: 2

$$\left(2x^2-\frac{1}{3x}\right)^9$$

- d) How many numbers greater than 8000 can be formed from the digits 1, 2, 4, 6, 9 if no digit is repeated?
- e) Use $t = \tan \frac{\theta}{2}$ to solve $\sin \theta + \cos \theta = -\frac{1}{4}$ for $-\pi \le \theta < \pi$
- f) Given y = f(x) where $f(x) = (x 1)^2 4$. Sketch the following curves on separate graphs, each at least one-third of a page in size:

(i)
$$y = -f(2-3x)$$
 3

(ii) y = |f(|x|)| 2

2

2

2

Question 12 (15 marks)

(START A NEW BOOKLET)

a) Using the substitution $u^2 = x + 1$ where u > 0 to find:

$$\int_0^3 \frac{x+2}{\sqrt{x+1}} dx$$

- b) Given $f(x) = \sin^{-1} x$ and $g(x) = \cos^{-1} x$
 - (i) Sketch f(x) and g(x) on the same set of axes 2
 - (ii) Hence, state the value of f(x) + g(x) for $-1 \le x \le 1$ and explain the 1 significance of this finding.
- c) By methods of induction, prove that $3^{2n+2} 8n 9$ is divisible by 64 for all 3 integers $n \ge 1$
- d) Show that if 19 distinct numbers are chosen from the sequence 2
 1, 4, 7, 10, ..., 100 there must be two of them whose sum is 104.
- e) Given $4x^4 + 8x^3 + 3x^2 2x 1 = 0$
 - (i) Express in the form $(ax^2 + bx)^2 (cx + d)^2 = 0$, where a, b, c and 2 d are positive integers, and state the values of a, b, c and d.
 - (ii) Hence solve the equation for x

3

Question 13 (15 marks)

(START A NEW BOOKLET)

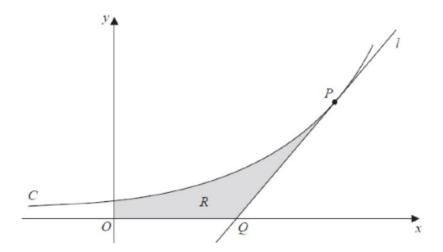
- a) Given $f(x) = x \cos^{-1} x \sqrt{1 x^2}$
 - (i) Find f'(x)
 - (ii) Hence, evaluate:

$$\int_0^1 \cos^{-1} x \ dx$$

b) Let *T* be the temperature inside B15 at time *t* and let *A* be the constant outside air temperature. Newton's law of cooling states that the rate of change of the temperature *T* is proportional to (T - A). It can be shown that $T = A + Ce^{kt}$ where *C* and *k* are constants satisfies Newton's law of cooling.

The outside air temperature is $15^{\circ} C$ and Year 12 come in from lunch and open all the windows. The temperature inside drops from $25^{\circ}C$ to $21^{\circ}C$ over a period of half an hour.

- (i) Find the values of C and k
- (ii) How much longer would it take the temperature to drop to 16°C? Give 1 your answer to the nearest minute.
- c) A coach is watching a gridiron player from a point O on the sideline. He looks directly at the player without taking his eyes off him. The player starts at position A with position vector $\overrightarrow{OA} = 25i + 30j$. The player runs in a straight line with a constant speed. After 2 seconds, the player is at position B with position vector $\overrightarrow{OB} = 19i + 33j$. The coach watches the player run for 10 seconds in total starting from position A and finishing at position C.
 - (i) After 10 seconds, what is the position vector \overrightarrow{OC} of the player relative 2 to the coach?
 - (ii) Through what angle does the coach turn his head in order to watch 2 them for the full 10 seconds? Answer to the nearest minute.


2

2

Question 13 (cont.)

d) The diagram shows a region bound by the curve C with the equation $y = 3^x$ the line l and the x-axis.

The *x*-co-ordinates of points *P* and *Q* are 2 and $(2 - \frac{1}{\ln 3})$ respectively.

A solid is created when the region R is rotated around the x-axis. Find the volume of the solid formed.

Question 14 (15 marks)

(START A NEW BOOKLET)

a) Solve:

$$6\sin^2 x + 4\sin x \cos x - 3\sin x = 0 \quad \text{for} \quad 0 \le x \le \pi$$

2

1

3

1

b) Given

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- (i) Show that y = f(x) has no stationary points. 2 (ii) Given that $y = \pm 1$ are horizontal asymptotes, sketch the curve. 2
- (iii) For k > 0, consider the area enclosed by the curve, the lines y = 1, x = 0 and x = k. Show that this area can be expressed in the form:

$$\ln\left(\frac{2e^k}{e^k + e^{-k}}\right)$$

- Hence, justify why for all values of k, the area found in part (iii) is 1 (iv) always less than ln 2.
- c) A particle is projected from a point *O* with speed 80 ms⁻¹ at an angle of elevation α , where $\tan \alpha = \frac{5}{12}$. Two seconds later, a second particle is projected from O and it collides with the first particle one second after leaving 0. Let β be the initial angle of projection for the second projectile. Let $g = 10 \text{ ms}^{-2}$.
 - (i) Show that the displacement of the first particle after t seconds is given by the equation: $s(t) = 80t \cos \alpha \, \underset{\sim}{i} + (80t \sin \alpha - 5t^2)j$

- (ii) Find $\tan \beta$
- (iii) Find the initial velocity of the second particle

END OF EXAMINATION

1. D :

$$u - v = (2i - 6j) - (-i + 5j) = 2i + i - 6j - 5j = 3i - 11j$$

2. D :

$$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} = \frac{\alpha + \beta + \gamma}{\alpha\beta\gamma} = \frac{-p}{-q} = \frac{p}{q}$$

3. D :

 $v\cos 60^{\circ} = 30 \times \frac{1}{2} = 15 \,\mathrm{ms}^{-1}$

4. A :

Note when x = -2, g(x) = 0, f(x) = -4.

5. A :

Either by $\sin^2 x + \cos^2 x = 1$ or Pythagoras theorem (adjust for 2nd quadrant, only $\cos is + ve$), $\sin x = \frac{3}{5}$ and $\tan x = \frac{-3}{4} \Rightarrow \tan 2x = \frac{2 \tan x}{1 - \tan^2 x} = \frac{2 \times \frac{-3}{4}}{1 - (\frac{-3}{4})^2} = \frac{-24}{7}$

6. D :

$$\operatorname{proj}_{\mathbf{u}}\mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\mathbf{u}$$
$$\mathbf{u} \cdot \mathbf{v} = (2)(-2) + (3)(4) = -4 + 12 = 8$$
$$\operatorname{proj}_{\mathbf{u}}\mathbf{v} = \frac{8}{13}\mathbf{u} = \frac{8}{13}(2\mathbf{i} + 3\mathbf{j}) = \frac{16}{13}\mathbf{i} + \frac{24}{13}\mathbf{j}$$

Cannot be B as slope is 0 when x = 0 not undefined.

Cannot be C or D because slope is +ve when x < 0 and y < 0

8. D:

Since $\cos^2 t + \sin^2 t = 1 \Rightarrow x + \frac{y}{4} = 1 \Rightarrow y = 4 - 4x$

9. D:

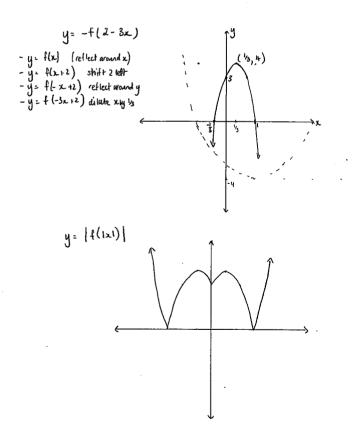
$$y = \cos^{-1}(-\sin x) = \pi - \cos^{-1}(\sin x) = \pi - (\frac{\pi}{2} - x) = x + \frac{\pi}{2}$$

10. B:

The integral is equal to the area between the curve and the y axis, which is A - B + 3

Section B

Question 11

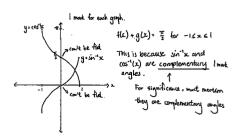

a)
$$\frac{6}{x-2} \ge 3$$

 $\frac{2}{x-2} \ge 1$
 $2x-4 \ge (x-2)^2$, $x=2$
 $2x-4 \ge (x-2)$
 $2x-4 \ge (x-2)$
 $2x-4 \ge (x-2)$
 $2 \le x \le 4$
b) $\sin(2\cos^{-1}(2x))$ Let $\le \cos^{-1}(2x)$
 $\cos x = 2^{1/3}$
 $\sin 2x = 2\sin \cos \cos x$
 $= 2\left(\frac{15}{3}\right)\left(\frac{2}{3}\right)$
 $\sin(2\cos^{-1}(2x))^2 + 4\sqrt{5}$
 9
c) $\left(2x^2 - \frac{1}{3x}\right)^9$ General term
 $= 2(x^2/3)^{1-r}$
 $= 2(x^$

$${}^{9}C_{5} 2^{5} (-1)^{4} ({}^{1}3)^{4} = \frac{448}{9}$$

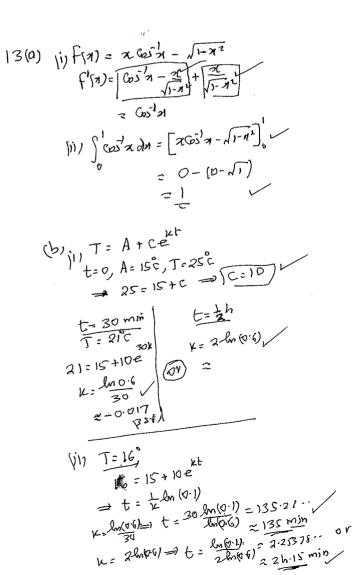
$$\begin{array}{rcl} & & \text{digits, starting with } q & q_{--} &= 4 \times 3 \times 2 \\ & & 5 & \text{digits} & 5 & \\ & & & = 5 & \\ \end{array}$$

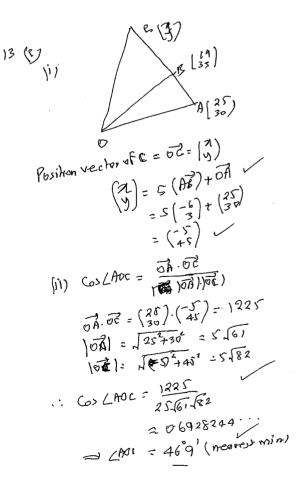
144 numbers

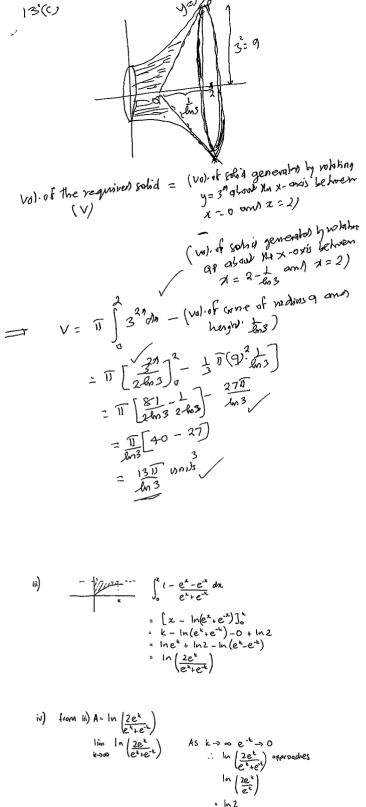

e)
$$t = \tan \frac{\theta}{2}$$

 $-\pi \leqslant \theta \leqslant \pi$
 $2t = \frac{1}{1+t^2}$
 $\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} = -\frac{1}{4}$
 $\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} = -\frac{1}{4}$
 $4(1+2t-t^2) = -1-t^2$
 $4+8t-4t^2 = -t^2-1$
 $0 = 3t^2-8t-5$
 $t = 8 \pm \frac{1}{564+60}$
 $= \frac{4\pm \frac{1}{51}}{3}$
 $t = \frac{4\pm \sqrt{51}}{3}$
 $t = \frac{4\pm \sqrt{51}}{3}$
 $t = \frac{4\pm \sqrt{51}}{3}$
 $\theta = 2\tan^{-1}(\frac{4\pm\sqrt{51}}{3})$
 $= 1.27$
 $\theta = 2\tan^{-1}(\frac{4\pm\sqrt{51}}{3})$
 $\theta = 2\tan^{-1}(\frac{4\pm\sqrt{51}}{5})$
 $\pi = 0.48$
f) $y = (x-1)^2 - 4$
 $y = -f(\lambda - 3x)$
 $y = (x - 1)^2 - 4$

Q12

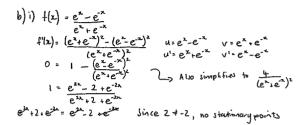

Question 12
a)
$$u^{1}=x+1$$
 $u>0$ $x=0$ $u^{1}=1$ $x=3$ $u^{1}=14$
 $u=1$ $u=2$
 $\int_{0}^{3} \frac{x+2}{\sqrt{x+1}} dx$ $x=u^{1-1}$
 $dx=2u$
 $dx=2u^{2}$
 $dx=2u^{2}$

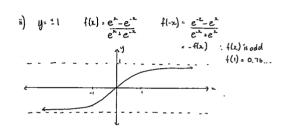

b) f(x) = sin * x g(x) = cos * x



For $n=1$ $3^{2(1)+2}-8(1)-9=3^{4}-17$ $\cdot 81-17$ = 64 which is duissible by 64 \therefore True for $n=1$	Step prive three for n=1 1 morek.	d) 1,4,7,10,,100 Consider poins which sum to 104 (100,4) (97,7) (55,49) I mark for portically exploration (100,4) (97,7) (55,49) I mark for portically explored time There are 16 such porins, plus the (e.g. didn't mention the laterer 1 and 52) numbers 1 and 52
Assume true for not is. 324+2-86-9=64m, mEZ (**)	Step 2 assume true for hek &	: If choosing 1,52 and ane number 2 moulds for clear explanation using from each pair than by the projective Principle. principle the 19th number must be from
	Step 3 Prove true for n=kt1	one of the poirs already chosen. Nust state the value of e^{1} $4x^{4} + 8x^{3} + 8x^{2} - 2x - 1 = 0$ arb is and a clearty. If not, reasoninum, 1 must.
LHS = 3^{2k+3+2} , $8k - 8 - 9$ = $3^{2k+4} - 9k - 17$ = $9k 3^{2k+2} - 8k - 17$	l mark	i) $4x^{4} + 8x^{2} + 4x^{2} - x^{2} - 2x - 1 < 0$ $(2x^{2} + 2x)^{4} - (x + 1)^{2} = 0$ I mark for addition of land 2 of them right. 2 marks for add values right (note a, b, c, c) could (note a, b, c, c) could
From (**) 32+2 - 64m+8k+9 .: LNS = 9 × (64m+8k+9) - 8k-17 = 9x64m + 72k+81-8k-17		$ \begin{array}{c} \text{ lo all be acgative} \\ (2x^{1}+2x-x-i)(2x^{3}+2x+x+i) = 0 \\ (2x^{2}+x-i)(2x^{3}+3x+i) = -0 \\ (2x^{-1}+x-i)(2x^{-1}+3x+i) = -0 \end{array} $
= 9x64m +64k +64 = 64 (9m + k + 1) which is divuible by 64 since m, k EZ		$\frac{(2x-1)(2x+1)(2x+1)(2x+1)=0}{(x-1)(2x-1$

Since true for n=1 and true for n=k+1 if true for n=kthen by PM1 true for all $n \ge 1$ 1 mark.




Alternately, consider
$$\ln\left(\frac{2e^{k}}{e^{k}+e^{-k}}\right) = \ln 2 + \ln\left(\frac{e^{k}}{e^{k}+e^{-k}}\right)$$

Since e^{k} , e^{k} are both >0
 $e^{k} < e^{k} + e^{-k}$
 $\therefore \frac{e^{k}}{e^{k}+e^{-k}} < 1$
 $\therefore \ln\left(\frac{e^{k}}{e^{k}+e^{-k}}\right) < 0$.

Q14 Tuesday, 6 August 2024 9:50 AM

$$\begin{aligned} \sin x + 4\cos x - 3 &= 0 \\ \sin x + 2\cos x - 3 &= 0 \\ x &= 0 \\ x &= 0, \pi \\ &= 0.15870... \\ &$$

- Could also use t-method or similar Answers in radians

$$s_{1}(t) = \$0tcosa\underline{i} + (\$0tsina-5t)]$$

$$ii) s_{1}(t) \text{ for particle } z$$

$$s_{2}(t) = Vtcos\beta\underline{i} + (Vtsin\beta-5t^{2})]$$

Particles collide when s, (3) and s_(1)

$$\therefore V (\cos \beta = 80 \times 3 \cos \alpha \text{ and } V \sin \beta - 5 = 80 \times 3 \sin \alpha - 45$$

$$V (\cos \beta = 240 (\frac{12}{13}) \quad V \sin \beta = 240 \times \frac{5}{13} - 40$$

$$= \frac{2880}{13} \quad = \frac{680}{15}$$

$$\therefore \tan \beta = \frac{680}{2880}$$

$$= \frac{14}{72}$$

$$(i) \text{ From } i) \quad V (\cos \beta = \frac{2880}{13} \quad \text{ subs} \quad 17$$

$$V = \frac{2880}{13} \times \frac{5473}{72}$$

$$V = \frac{2880}{13} \times \frac{5473}{72}$$

$$= \frac{40}{13} \sqrt{5473}$$

$$\approx 227.43 \text{ m/s} (2dp)$$